Quick Start Guide
Install Shrinkwrap
Packages don’t yet exist, so currently the only way to install Shrinkwrap is to install its dependencies and clone the git repository.
Shrinkwrap is tested on Ubuntu 20.04 although other Linux distributions are likely to JustWork (TM). macOS is also known to work when using the docker runtime as long as Docker Desktop has first been installed.
Shrinkwrap requires at least Python 3.6.9. Older versions may work, but are not tested.
sudo apt-get install git netcat-openbsd python3 python3-pip telnet
sudo pip3 install pyyaml termcolor tuxmake
git clone https://git.gitlab.arm.com/tooling/shrinkwrap.git
export PATH=$PWD/shrinkwrap/shrinkwrap:$PATH
If using a Python version older than 3.9, you will also need to install the
graphlib-backport
pip package:
sudo pip3 install graphlib-backport
If using Docker Runtime Backend
If Docker was not previously set up on your system, you will need to install the package, create a ‘docker’ group and add your user to it. This allows shrinkwrap to interact with docker without needing sudo. For more information see docker linux-postinstall.
sudo apt-get install docker.io
sudo groupadd docker
sudo usermod -aG docker $USER
# Log out/log in for change to take effect
If using Podman Runtime Backend
Note
Podman is only available within Ubuntu repositories from Ubuntu 20.10 and newer. See podman installation instructions for installation methods for other distributions.
sudo apt-get install podman
Optional Environment Variables
Shrinkwrap consumes the following set of optional environment variables:
name |
default |
description |
---|---|---|
SHRINKWRAP_CONFIG |
<None> |
Colon-separated list of paths to config stores. Configs are searched for relative to the current directory as well as relative to these paths. |
SHRINKWRAP_BUILD |
~/.shrinkwrap/build |
Location where config builds are performed. Each config has its own subdirectory, with further subdirectories for each of its components. |
SHRINKWRAP_PACKAGE |
~/.shrinkwrap/package |
Location where config builds are packaged to. When running a config, it is done from the package location. |
Guided Tour: Configure a platform and boot a kernel
This section provides a guided tour of Shrinkwrap, using a common use case of building required platform FW and configuring the FVP for Armv9.3 and booting a kernel. This example uses EDK2 (UEFI) but many other options are available.
Note
By default, the below commands will use the docker runtime and automatically
download and use the appropriate container image from Docker Hub.
Alternatively, you can choose to run with the null
runtime by providing
--runtime=null
(between shrinkwrap
and the sub-command). This will
cause all commands to be executed on the native system. Users are responsible
for setting up the environment in this case. Or if you have chosen to use
Podman as the runtime backend, add --runtime=podman
.
First invoke the tool to view help:
shrinkwrap --help
shrinkwrap <command> --help
Now, inspect the available configs:
shrinkwrap inspect
This will show all of the (concrete) configs in the config store. The below
output shows a sample. Notice that each config lists its runtime variables
(“rtvars”) along with their default values. None
means there is no default
and the user must provide a value when running the config. (A “concrete” config
is one that is deemed ready-to-use out-of-the-box. Whereas a config “fragment”
is a piece of config that is usually composed with others and configured into a
concrete config. You can view non-concrete fragments by providing extra args).
Expand
name: bootwrapper.yaml
description: Best choice for: I have a linux-system.axf boot-wrapper and
want to run it.
This config does not build any components (although
shrinkwrap still requires you to build it before running).
Instead the user is expected to provide a boot-wrapper
executable (usually called linux-system.axf) as the
BOOTWRAPPER rtvar, which will be executed in the FVP. A
ROOTFS can be optionally provided. If present it is loaded
into the virtio block device (/dev/vda).
concrete: True
run-time variables: LOCAL_NET_PORT: 8022
BOOTWRAPPER: None
ROOTFS:
--------------------------------------------------------------------------------
name: cca-3world.yaml
description: Brings together a software stack to demonstrate Arm CCA
running on FVP in a three-world configuration. Includes
TF-A in root world, RMM in realm world, and Linux in Normal
world.
In order to launch realm VMs, the user must bring their own
rootfs that contains a realm-aware kvmtool and an RSI-aware
guest kernel image.
concrete: True
run-time variables: LOCAL_NET_PORT: 8022
BL1: ${artifact:BL1}
FIP: ${artifact:FIP}
KERNEL: ${artifact:KERNEL}
ROOTFS:
--------------------------------------------------------------------------------
name: cca-4world.yaml
description: Brings together a software stack to demonstrate Arm CCA
running on FVP in a four-world configuration. Includes TF-A
in root world, Hafnium and some demo secure partitions in
secure world, RMM in realm world, and Linux in Normal
world.
In order to launch realm VMs, the user must bring their own
rootfs that contains a realm-aware kvmtool and an RSI-aware
guest kernel image.
concrete: True
run-time variables: LOCAL_NET_PORT: 8022
BL1: ${artifact:BL1}
FIP: ${artifact:FIP}
KERNEL: ${artifact:KERNEL}
ROOTFS:
--------------------------------------------------------------------------------
name: ffa-tftf.yaml
description: Brings together a software stack to demonstrate Arm FF-A
running on FVP. Includes TF-A in secure EL3, Hafnium in
secure EL2 and some demo TF-A test secure partitions.
concrete: True
run-time variables: LOCAL_NET_PORT: 8022
BL1: ${artifact:BL1}
FIP: ${artifact:FIP}
DTB: ${artifact:DTB}
CMDLINE: console=ttyAMA0
earlycon=pl011,0x1c090000
root=/dev/vda ip=dhcp
KERNEL: None
ROOTFS:
EDK2FLASH:
--------------------------------------------------------------------------------
name: ns-edk2.yaml
description: Best choice for: I want to run Linux on FVP, booting with
ACPI/DT, and have easy control over its command line.
Brings together TF-A and EDK2 to provide a simple non-
secure world environment running on FVP. Allows easy
specification of the kernel image and command line, and
rootfs at runtime (see rtvars). ACPI is provided by UEFI.
An extra rtvar is added (DTB) which allows specification of
a custom device tree. By default (if not overriding the
rtvar), the upstream kernel device tree is used. DT is
enabled by default. Use 'acpi=force' to enable ACPI boot.
By default (if not overriding the rtvars) a sensible
command line is used that will set up the console for
logging and attempt to mount the rootfs image from the
FVP's virtio block device. However the default rootfs image
is empty, so the kernel will panic when attempting to
mount; the user must supply a rootfs if it is required that
the kernel completes its boot. No default kernel image is
supplied and the config will refuse to run unless it is
explicitly specified.
Note that by default, UEFI variables are build time
configured directing EDK2 to boot to the shell. This will
cause startup.nsh to be executed and will start the kernel
boot. This way everything is automatic. By default, all
EDK2 output is muxed to stdout. If you prefer booting UEFI
to its UI, override the the build pcd parameter
`PcdUefiShellDefaultBootEnable` using the overlay and
override terminals 'bp.terminal_0'.type to 'telnet'.
concrete: True
run-time variables: LOCAL_NET_PORT: 8022
BL1: ${artifact:BL1}
FIP: ${artifact:FIP}
DTB: ${artifact:DTB}
CMDLINE: console=ttyAMA0
earlycon=pl011,0x1c090000
root=/dev/vda ip=dhcp
KERNEL: None
ROOTFS:
EDK2FLASH:
--------------------------------------------------------------------------------
name: ns-preload.yaml
description: Best choice for: I just want to run Linux on FVP.
A simple, non-secure-only configuration where all
components are preloaded into memory (TF-A's BL31, DTB and
kernel). The system resets directly to BL31. Allows easy
specification of a custom command line at build-time (via
build.dt.params dictionary) and specification of the device
tree, kernel image and rootfs at run-time (see rtvars).
By default (if not overriding the rtvars), the upstream
kernel device tree is used along with a sensible command
line that will set up the console for logging and attempt
to mount the rootfs image from the FVP's virtio block
device. However the default rootfs image is empty, so the
kernel will panic when attempting to mount; the user must
supply a rootfs if it is required that the kernel completes
its boot. No default kernel image is supplied and the
config will refuse to run unless it is explicitly
specified. Note: If specifying a custom dtb at runtime,
this will also override any command line specified at build
time, since the command line is added to the chosen node of
the default dtb.
concrete: True
run-time variables: LOCAL_NET_PORT: 8022
BL31: ${artifact:BL31}
DTB: ${artifact:DTB}
KERNEL: None
ROOTFS:
Now build the ns-edk2.yaml
config. This allows booting a kernel on FVP,
using edk2 as the bootloader (it uses DT by default, but can be made to use ACPI
by passing acpi=force
at runtime). (optionally add --verbose
to see all
the output from the component build systems).
shrinkwrap build --overlay=arch/v9.3.yaml ns-edk2.yaml
This will sync all the required repos, build the components and package the artifacts.
Warning
By default, Shrinkwrap will sync all component repos to the revision specified
in the config on every build invocation. If you have made changes in the
working directory, your CHANGES WILL BE LOST! You can override this behaviour
so that Shrinkwrap just builds whatever is in the working directory by adding
--no-sync <component>
or --no-sync-all
to the command line.
Alternatively, pass --dry-run
to view the shell script that would have been
run:
shrinkwrap build --overlay=arch/v9.3.yaml --dry-run ns-edk2.yaml
Expand
#!/bin/bash
# SHRINKWRAP AUTOGENERATED SCRIPT.
# Exit on error.
set -e
# Remove old package.
rm -rf /data_nvme0n1/ryarob01/shrinkwrap_demo/live/package/ns-edk2.yaml > /dev/null 2>&1 || true
rm -rf /data_nvme0n1/ryarob01/shrinkwrap_demo/live/package/ns-edk2 > /dev/null 2>&1 || true
# Create directory structure.
mkdir -p /data_nvme0n1/ryarob01/shrinkwrap_demo/live/build/source/ns-edk2/dt
mkdir -p /data_nvme0n1/ryarob01/shrinkwrap_demo/live/build/source/ns-edk2/edk2
mkdir -p /data_nvme0n1/ryarob01/shrinkwrap_demo/live/build/source/ns-edk2/tfa
mkdir -p /data_nvme0n1/ryarob01/shrinkwrap_demo/live/package/ns-edk2
# Sync git repo for config=ns-edk2 component=dt.
pushd /data_nvme0n1/ryarob01/shrinkwrap_demo/live/build/source/ns-edk2
if [ ! -d "dt/.git" ] || [ -f "./.dt_sync" ]; then
rm -rf dt > /dev/null 2>&1 || true
mkdir -p .
touch ./.dt_sync
git clone --quiet git://git.kernel.org/pub/scm/linux/kernel/git/devicetree/devicetree-rebasing.git dt
pushd dt
git checkout --quiet --force v6.1-dts
git submodule --quiet update --init --checkout --recursive --force
popd
rm ./.dt_sync
fi
popd
# Sync git repo for config=ns-edk2 component=edk2.
pushd /data_nvme0n1/ryarob01/shrinkwrap_demo/live/build/source/ns-edk2
if [ ! -d "edk2/edk2/.git" ] || [ -f "edk2/.edk2_sync" ]; then
rm -rf edk2/edk2 > /dev/null 2>&1 || true
mkdir -p edk2
touch edk2/.edk2_sync
git clone --quiet https://github.com/tianocore/edk2.git edk2/edk2
pushd edk2/edk2
git checkout --quiet --force edk2-stable202211
git submodule --quiet update --init --checkout --recursive --force
popd
rm edk2/.edk2_sync
fi
if [ ! -d "edk2/edk2-platforms/.git" ] || [ -f "edk2/.edk2-platforms_sync" ]; then
rm -rf edk2/edk2-platforms > /dev/null 2>&1 || true
mkdir -p edk2
touch edk2/.edk2-platforms_sync
git clone --quiet https://github.com/tianocore/edk2-platforms.git edk2/edk2-platforms
pushd edk2/edk2-platforms
git checkout --quiet --force 20e07099d8f11889d101dd710ca85001be20e179
git submodule --quiet update --init --checkout --recursive --force
popd
rm edk2/.edk2-platforms_sync
fi
if [ ! -d "edk2/acpica/.git" ] || [ -f "edk2/.acpica_sync" ]; then
rm -rf edk2/acpica > /dev/null 2>&1 || true
mkdir -p edk2
touch edk2/.acpica_sync
git clone --quiet https://github.com/acpica/acpica.git edk2/acpica
pushd edk2/acpica
git checkout --quiet --force R10_20_22
git submodule --quiet update --init --checkout --recursive --force
popd
rm edk2/.acpica_sync
fi
popd
# Sync git repo for config=ns-edk2 component=tfa.
pushd /data_nvme0n1/ryarob01/shrinkwrap_demo/live/build/source/ns-edk2
if [ ! -d "tfa/.git" ] || [ -f "./.tfa_sync" ]; then
rm -rf tfa > /dev/null 2>&1 || true
mkdir -p .
touch ./.tfa_sync
git clone --quiet https://git.trustedfirmware.org/TF-A/trusted-firmware-a.git tfa
pushd tfa
git checkout --quiet --force v2.8.0
git submodule --quiet update --init --checkout --recursive --force
popd
rm ./.tfa_sync
fi
popd
# Build for config=ns-edk2 component=dt.
export CROSS_COMPILE=aarch64-none-elf-
pushd /data_nvme0n1/ryarob01/shrinkwrap_demo/live/build/source/ns-edk2/dt
DTS=fvp-base-revc.dts
INITRD_START=
INITRD_END=
DT_BASENAME=$(basename ${DTS} .dts)
DTB_INTER=src/arm64/arm/${DT_BASENAME}.dtb
DTB_FINAL=/data_nvme0n1/ryarob01/shrinkwrap_demo/live/build/build/ns-edk2/dt/dt_bootargs.dtb
make CPP=${CROSS_COMPILE}cpp -j28 ${DTB_INTER}
CHOSEN=
if [ ! -z "" ]; then
CHOSEN="${CHOSEN}bootargs = \"\";\n"
fi
if [ ! -z "${INITRD_START}" ] && [ ! -z "${INITRD_END}" ]; then
INITRD_START_HI=$(((${INITRD_START} >> 32) & 0xffffffff))
INITRD_START_LO=$((${INITRD_START} & 0xffffffff))
INITRD_END_HI=$(((${INITRD_END} >> 32) & 0xffffffff))
INITRD_END_LO=$((${INITRD_END} & 0xffffffff))
CHOSEN="${CHOSEN}linux,initrd-start = <${INITRD_START_HI} ${INITRD_START_LO}>;\n"
CHOSEN="${CHOSEN}linux,initrd-end = <${INITRD_END_HI} ${INITRD_END_LO}>;\n"
fi
if [ -z "${CHOSEN}" ]; then
cp ${DTB_INTER} ${DTB_FINAL}
else
( dtc -q -O dts -I dtb ${DTB_INTER} ; echo -e "/ { chosen { ${CHOSEN} }; };" ) | dtc -q -O dtb -o ${DTB_FINAL}
fi
if [ "${DTS}" = "fvp-base-revc.dts" ]; then
OVERLAY="/ {
reserved-memory {
fw: fw@7C000000 {
reg = <0x00000000 0xFC000000 0 0x04000000>;
no-map;
};
};
timer {
clock-frequency = <100000000>;
};
psci {
compatible = \"arm,psci-1.0\", \"arm,psci-0.2\";
max-pwr-lvl = <2>;
};
cpus {
cpu-map {
cluster0 {
core0 { cpu = <&{/cpus/cpu@0}>; };
core1 { cpu = <&{/cpus/cpu@100}>; };
core2 { cpu = <&{/cpus/cpu@200}>; };
core3 { cpu = <&{/cpus/cpu@300}>; };
};
cluster1 {
core0 { cpu = <&{/cpus/cpu@10000}>; };
core1 { cpu = <&{/cpus/cpu@10100}>; };
core2 { cpu = <&{/cpus/cpu@10200}>; };
core3 { cpu = <&{/cpus/cpu@10300}>; };
};
};
};
bus@8000000 {
motherboard-bus@8000000 {
iofpga-bus@300000000 {
virtio@200000 {
status = \"okay\";
};
};
};
};
};"
( dtc -q -O dts -I dtb ${DTB_FINAL} ; echo -e "${OVERLAY}" ) | dtc -q -O dtb -o ${DTB_FINAL}
fi
popd
# Build for config=ns-edk2 component=edk2.
export CROSS_COMPILE=aarch64-none-elf-
pushd /data_nvme0n1/ryarob01/shrinkwrap_demo/live/build/source/ns-edk2/edk2
export WORKSPACE=/data_nvme0n1/ryarob01/shrinkwrap_demo/live/build/source/ns-edk2/edk2
export GCC5_AARCH64_PREFIX=$CROSS_COMPILE
export PACKAGES_PATH=$WORKSPACE/edk2:$WORKSPACE/edk2-platforms
export IASL_PREFIX=$WORKSPACE/acpica/generate/unix/bin/
export PYTHON_COMMAND=/usr/bin/python3
make -j28 -C acpica
source edk2/edksetup.sh
make -j28 -C edk2/BaseTools
build -n 28 -D EDK2_OUT_DIR=/data_nvme0n1/ryarob01/shrinkwrap_demo/live/build/build/ns-edk2/edk2 -a AARCH64 -t GCC5 -p Platform/ARM/VExpressPkg/ArmVExpress-FVP-AArch64.dsc -b RELEASE
popd
# Build for config=ns-edk2 component=tfa.
export CROSS_COMPILE=aarch64-none-elf-
pushd /data_nvme0n1/ryarob01/shrinkwrap_demo/live/build/source/ns-edk2/tfa
make BUILD_BASE=/data_nvme0n1/ryarob01/shrinkwrap_demo/live/build/build/ns-edk2/tfa PLAT=fvp DEBUG=0 LOG_LEVEL=40 ARM_DISABLE_TRUSTED_WDOG=1 FVP_HW_CONFIG_DTS=fdts/fvp-base-gicv3-psci-1t.dts BL33=/data_nvme0n1/ryarob01/shrinkwrap_demo/live/build/build/ns-edk2/edk2/RELEASE_GCC5/FV/FVP_AARCH64_EFI.fd ARM_ARCH_MINOR=5 ENABLE_SVE_FOR_NS=1 ENABLE_SVE_FOR_SWD=1 CTX_INCLUDE_PAUTH_REGS=1 BRANCH_PROTECTION=1 CTX_INCLUDE_MTE_REGS=1 ENABLE_FEAT_HCX=1 CTX_INCLUDE_AARCH32_REGS=0 ENABLE_SME_FOR_NS=1 ENABLE_SME_FOR_SWD=1 all fip
popd
# Copy artifacts for config=ns-edk2.
cp /data_nvme0n1/ryarob01/shrinkwrap_demo/live/build/build/ns-edk2/dt/dt_bootargs.dtb /data_nvme0n1/ryarob01/shrinkwrap_demo/live/package/ns-edk2/dt_bootargs.dtb
cp /data_nvme0n1/ryarob01/shrinkwrap_demo/live/build/build/ns-edk2/edk2/RELEASE_GCC5/FV/FVP_AARCH64_EFI.fd /data_nvme0n1/ryarob01/shrinkwrap_demo/live/package/ns-edk2/FVP_AARCH64_EFI.fd
cp /data_nvme0n1/ryarob01/shrinkwrap_demo/shrinkwrap/config/edk2-flash.img /data_nvme0n1/ryarob01/shrinkwrap_demo/live/package/ns-edk2/edk2-flash.img
cp /data_nvme0n1/ryarob01/shrinkwrap_demo/live/build/build/ns-edk2/tfa/fvp/release/bl1.bin /data_nvme0n1/ryarob01/shrinkwrap_demo/live/package/ns-edk2/bl1.bin
cp /data_nvme0n1/ryarob01/shrinkwrap_demo/live/build/build/ns-edk2/tfa/fvp/release/bl2.bin /data_nvme0n1/ryarob01/shrinkwrap_demo/live/package/ns-edk2/bl2.bin
cp /data_nvme0n1/ryarob01/shrinkwrap_demo/live/build/build/ns-edk2/tfa/fvp/release/bl31.bin /data_nvme0n1/ryarob01/shrinkwrap_demo/live/package/ns-edk2/bl31.bin
cp /data_nvme0n1/ryarob01/shrinkwrap_demo/live/build/build/ns-edk2/tfa/fvp/release/fip.bin /data_nvme0n1/ryarob01/shrinkwrap_demo/live/package/ns-edk2/fip.bin
Now start the FVP. We will pass our own kernel and rootfs disk image as runtime
variables. A config can define any number of runtime variables which may have
default values (see inspect
command above). If a variable has no default
value, then the user must provide a value when invoking the run
command. The
ns-edk2.yaml
config requires the user to provide a kernel, but the rootfs
is optional. If the rootfs was omitted, the kernel would boot to the point where
it attempts to mount the rootfs then panic (which is sufficient for some
development use cases!).
shrinkwrap run --rtvar=KERNEL=path/to/Image --rtvar=ROOTFS=path/to/rootfs.img ns-edk2.yaml
This starts the FVP and multiplexes all the UART terminals to stdout and
forwards stdin to the tfa+linux
uart terminal. This allows the user to
interact directly with the FVP in a terminal without the need for a GUI setup:
Expand
[ fvp ] terminal_0: Listening for serial connection on port 5000
[ fvp ] terminal_1: Listening for serial connection on port 5001
[ fvp ] terminal_2: Listening for serial connection on port 5002
[ fvp ] terminal_3: Listening for serial connection on port 5003
[ fvp ]
[ fvp ] Info: FVP_Base_RevC_2xAEMvA: FVP_Base_RevC_2xAEMvA.bp.flashloader0: FlashLoader: Loaded 100 kB from file '<root>/package/ns-preload/fip.bin'
[ fvp ]
[ fvp ] Info: FVP_Base_RevC_2xAEMvA: FVP_Base_RevC_2xAEMvA.bp.secureflashloader: FlashLoader: Loaded 30 kB from file '<root>/package/ns-preload/bl1.bin'
[ fvp ]
[ fvp ] libdbus-1.so.3: cannot open shared object file: No such file or directory
[ fvp ] libdbus-1.so.3: cannot open shared object file: No such file or directory
[ tfa+linux ] NOTICE: BL31: v2.7(release):v2.7.0-391-g9dedc1ab2
[ tfa+linux ] NOTICE: BL31: Built : 09:41:20, Sep 15 2022
[ tfa+linux ] INFO: GICv3 with legacy support detected.
[ tfa+linux ] INFO: ARM GICv3 driver initialized in EL3
[ tfa+linux ] INFO: Maximum SPI INTID supported: 255
[ tfa+linux ] INFO: Configuring TrustZone Controller
[ tfa+linux ] INFO: Total 8 regions set.
[ tfa+linux ] INFO: BL31: Initializing runtime services
[ tfa+linux ] INFO: BL31: Preparing for EL3 exit to normal world
[ tfa+linux ] INFO: Entry point address = 0x84000000
[ tfa+linux ] INFO: SPSR = 0x3c9
[ tfa+linux ] [ 0.000000] Booting Linux on physical CPU 0x0000000000 [0x410fd0f0]
[ tfa+linux ] [ 0.000000] Linux version 5.15.0-rc2-gca9bfbea162d (ryarob01@e125769) (aarch64-none-linux-gnu-gcc (GNU Toolchain for the A-profile Architecture 9.2-2019.12 (arm-9.10)) 9.2.1 20191025, GNU ld (GNU Toolchain for the A-profile Architecture 9.2-2019.12 (arm-9.10)) 2.33.1.20191209) #1 SMP PREEMPT Thu Aug 4 11:31:55 BST 2022
[ tfa+linux ] [ 0.000000] Machine model: FVP Base RevC
[ tfa+linux ] [ 0.000000] earlycon: pl11 at MMIO 0x000000001c090000 (options '')
[ tfa+linux ] [ 0.000000] printk: bootconsole [pl11] enabled
[ tfa+linux ] [ 0.000000] efi: UEFI not found.
[ tfa+linux ] [ 0.000000] Reserved memory: created DMA memory pool at 0x0000000018000000, size 8 MiB
[ tfa+linux ] [ 0.000000] OF: reserved mem: initialized node vram@18000000, compatible id shared-dma-pool
[ tfa+linux ] [ 0.000000] NUMA: No NUMA configuration found
[ tfa+linux ] [ 0.000000] NUMA: Faking a node at [mem 0x0000000080000000-0x00000008ffffffff]
[ tfa+linux ] [ 0.000000] NUMA: NODE_DATA [mem 0x8ff7efc00-0x8ff7f1fff]
[ tfa+linux ] [ 0.000000] Zone ranges:
[ tfa+linux ] [ 0.000000] DMA [mem 0x0000000080000000-0x00000000ffffffff]
[ tfa+linux ] [ 0.000000] DMA32 empty
[ tfa+linux ] [ 0.000000] Normal [mem 0x0000000100000000-0x00000008ffffffff]
[ tfa+linux ] [ 0.000000] Movable zone start for each node
[ tfa+linux ] [ 0.000000] Early memory node ranges
[ tfa+linux ] [ 0.000000] node 0: [mem 0x0000000080000000-0x00000000ffffffff]
[ tfa+linux ] [ 0.000000] node 0: [mem 0x0000000880000000-0x00000008ffffffff]
[ tfa+linux ] [ 0.000000] Initmem setup node 0 [mem 0x0000000080000000-0x00000008ffffffff]
[ tfa+linux ] [ 0.000000] cma: Reserved 32 MiB at 0x00000000fe000000
[ tfa+linux ] [ 0.000000] psci: probing for conduit method from DT.
[ tfa+linux ] [ 0.000000] psci: PSCIv1.1 detected in firmware.
[ tfa+linux ] [ 0.000000] psci: Using standard PSCI v0.2 function IDs
[ tfa+linux ] [ 0.000000] psci: MIGRATE_INFO_TYPE not supported.
[ tfa+linux ] [ 0.000000] psci: SMC Calling Convention v1.2
...
Alternatively, you could have passed --dry-run
to see the FVP invocation script:
shrinkwrap run --rtvar=KERNEL=path/to/Image --rtvar=ROOTFS=path/to/rootfs.img --dry-run ns-edk2.yaml
Expand
#!/bin/bash
# SHRINKWRAP AUTOGENERATED SCRIPT.
# Exit on error.
set -e
# Execute prerun commands.
SEMIHOSTDIR=`mktemp -d`
function finish { rm -rf $SEMIHOSTDIR; }
trap finish EXIT
cp ./path/to/Image ${SEMIHOSTDIR}/Image
cp <root>/package/ns-edk2/fvp-base-revc_args.dtb ${SEMIHOSTDIR}/fdt.dtb
cat <<EOF > ${SEMIHOSTDIR}/startup.nsh
Image dtb=fdt.dtb console=ttyAMA0 earlycon=pl011,0x1c090000 root=/dev/vda ip=dhcp
EOF
# Run the model.
FVP_Base_RevC-2xAEMvA \
--plugin=$(which ScalableVectorExtension.so) \
--stat \
-C SVE.ScalableVectorExtension.has_sme2=1 \
-C SVE.ScalableVectorExtension.has_sme=1 \
-C SVE.ScalableVectorExtension.has_sve2=1 \
-C bp.dram_metadata.is_enabled=1 \
-C bp.dram_size=4 \
-C bp.flashloader0.fname=<root>/package/ns-edk2/fip.bin \
-C bp.flashloader1.fname=<root>/package/ns-edk2/edk2-flash.img \
-C bp.hostbridge.userNetPorts=8022=22 \
-C bp.hostbridge.userNetworking=1 \
-C bp.refcounter.non_arch_start_at_default=1 \
-C bp.refcounter.use_real_time=0 \
-C bp.secure_memory=1 \
-C bp.secureflashloader.fname=<root>/package/ns-edk2/bl1.bin \
-C bp.smsc_91c111.enabled=1 \
-C bp.terminal_0.mode=telnet \
-C bp.terminal_0.start_telnet=0 \
-C bp.terminal_1.mode=raw \
-C bp.terminal_1.start_telnet=0 \
-C bp.terminal_2.mode=raw \
-C bp.terminal_2.start_telnet=0 \
-C bp.terminal_3.mode=raw \
-C bp.terminal_3.start_telnet=0 \
-C bp.ve_sysregs.exit_on_shutdown=1 \
-C bp.virtioblockdevice.image_path=./path/to/rootfs.img \
-C bp.vis.disable_visualisation=1 \
-C cache_state_modelled=0 \
-C cluster0.NUM_CORES=4 \
-C cluster0.PA_SIZE=48 \
-C cluster0.check_memory_attributes=0 \
-C cluster0.clear_reg_top_eret=2 \
-C cluster0.cpu0.semihosting-cwd=${SEMIHOSTDIR} \
-C cluster0.ecv_support_level=2 \
-C cluster0.enhanced_pac2_level=3 \
-C cluster0.gicv3.cpuintf-mmap-access-level=2 \
-C cluster0.gicv3.without-DS-support=1 \
-C cluster0.gicv4.mask-virtual-interrupt=1 \
-C cluster0.has_16k_granule=1 \
-C cluster0.has_amu=1 \
-C cluster0.has_arm_v8-1=1 \
-C cluster0.has_arm_v8-2=1 \
-C cluster0.has_arm_v8-3=1 \
-C cluster0.has_arm_v8-4=1 \
-C cluster0.has_arm_v8-5=1 \
-C cluster0.has_arm_v8-6=1 \
-C cluster0.has_arm_v8-7=1 \
-C cluster0.has_arm_v8-8=1 \
-C cluster0.has_arm_v9-0=1 \
-C cluster0.has_arm_v9-1=1 \
-C cluster0.has_arm_v9-2=1 \
-C cluster0.has_arm_v9-3=1 \
-C cluster0.has_branch_target_exception=1 \
-C cluster0.has_brbe=1 \
-C cluster0.has_brbe_v1p1=1 \
-C cluster0.has_const_pac=1 \
-C cluster0.has_hpmn0=1 \
-C cluster0.has_large_system_ext=1 \
-C cluster0.has_large_va=1 \
-C cluster0.has_rndr=1 \
-C cluster0.max_32bit_el=0 \
-C cluster0.memory_tagging_support_level=3 \
-C cluster0.pmb_idr_external_abort=1 \
-C cluster0.stage12_tlb_size=1024 \
-C cluster1.NUM_CORES=4 \
-C cluster1.PA_SIZE=48 \
-C cluster1.check_memory_attributes=0 \
-C cluster1.clear_reg_top_eret=2 \
-C cluster1.ecv_support_level=2 \
-C cluster1.enhanced_pac2_level=3 \
-C cluster1.gicv3.cpuintf-mmap-access-level=2 \
-C cluster1.gicv3.without-DS-support=1 \
-C cluster1.gicv4.mask-virtual-interrupt=1 \
-C cluster1.has_16k_granule=1 \
-C cluster1.has_amu=1 \
-C cluster1.has_arm_v8-1=1 \
-C cluster1.has_arm_v8-2=1 \
-C cluster1.has_arm_v8-3=1 \
-C cluster1.has_arm_v8-4=1 \
-C cluster1.has_arm_v8-5=1 \
-C cluster1.has_arm_v8-6=1 \
-C cluster1.has_arm_v8-7=1 \
-C cluster1.has_arm_v8-8=1 \
-C cluster1.has_arm_v9-0=1 \
-C cluster1.has_arm_v9-1=1 \
-C cluster1.has_arm_v9-2=1 \
-C cluster1.has_arm_v9-3=1 \
-C cluster1.has_branch_target_exception=1 \
-C cluster1.has_brbe=1 \
-C cluster1.has_brbe_v1p1=1 \
-C cluster1.has_const_pac=1 \
-C cluster1.has_hpmn0=1 \
-C cluster1.has_large_system_ext=1 \
-C cluster1.has_large_va=1 \
-C cluster1.has_rndr=1 \
-C cluster1.max_32bit_el=0 \
-C cluster1.memory_tagging_support_level=3 \
-C cluster1.pmb_idr_external_abort=1 \
-C cluster1.stage12_tlb_size=1024 \
-C pci.pci_smmuv3.mmu.SMMU_AIDR=2 \
-C pci.pci_smmuv3.mmu.SMMU_IDR0=4592187 \
-C pci.pci_smmuv3.mmu.SMMU_IDR1=6291458 \
-C pci.pci_smmuv3.mmu.SMMU_IDR3=5908 \
-C pci.pci_smmuv3.mmu.SMMU_IDR5=4294902901 \
-C pci.pci_smmuv3.mmu.SMMU_ROOT_IDR0=3 \
-C pci.pci_smmuv3.mmu.SMMU_ROOT_IIDR=1083 \
-C pci.pci_smmuv3.mmu.SMMU_S_IDR1=2684354562 \
-C pci.pci_smmuv3.mmu.SMMU_S_IDR2=0 \
-C pci.pci_smmuv3.mmu.SMMU_S_IDR3=0 \
-C pci.pci_smmuv3.mmu.root_register_page_offset=131072 \
-C pctl.startup=0.0.0.0
Overlays are an important concept for Shrinkwrap. An overlay is a config fragment (either a yaml file or a json-encoded string) that can be passed separately on the command line and forms the top layer of the config. In this way, it can override or add any required configuration. You could achieve the same effect by creating a new config and specifying the main config as a layer in that new config, but with an overlay, you can apply a config fragment to many different existing configs without the need to write a new config file each time. You can see overlays being using in the above commands to target a specific Arm architecture revision (v9.3 in the example). You can change the targeted architecture just by changing the overlay. There are many other places where overlays come in handy. See Shrinkwrap Recipes for more examples.
You will notice in the examples above, that only build
commands include the
overlay and run
commands don’t specify it. This is because the final config
used for building is packaged in the built package, so when running the package,
the presence of the overlay is implicit. However, a user could choose to provide
an extra overlay at run
time, that affects only the runtime portion to
customize even further if desired.
For debug purposes, you can see a final, merged config by using the process
command:
shrinkwrap process --action=merge --overlay=arch/v9.3.yaml ns-edk2.yaml
Expand
%YAML 1.2
---
name: ns-edk2
fullname: ns-edk2.yaml
description: 'Best choice for: I want to run Linux on FVP, booting with ACPI/DT, and
have easy control over its command line.
Brings together TF-A and EDK2 to provide a simple non-secure world environment running
on FVP. Allows easy specification of the kernel image and command line, and rootfs
at runtime (see rtvars). ACPI is provided by UEFI.
An extra rtvar is added (DTB) which allows specification of a custom device tree.
By default (if not overriding the rtvar), the upstream kernel device tree is used.
DT is enabled by default. Use ''acpi=force'' to enable ACPI boot.
By default (if not overriding the rtvars) a sensible command line is used that will
set up the console for logging and attempt to mount the rootfs image from the FVP''s
virtio block device. However the default rootfs image is empty, so the kernel will
panic when attempting to mount; the user must supply a rootfs if it is required
that the kernel completes its boot. No default kernel image is supplied and the
config will refuse to run unless it is explicitly specified.
Note that by default, UEFI variables are build time configured directing EDK2
to boot to the shell. This will cause startup.nsh to be executed and will
start the kernel boot. This way everything is automatic. By default, all EDK2
output is muxed to stdout. If you prefer booting UEFI to its UI, override the
the build pcd parameter `PcdUefiShellDefaultBootEnable` using the overlay
and override terminals 'bp.terminal_0'.type to 'telnet'.
concrete: true
graph: {}
build:
dt:
repo:
.:
remote: git://git.kernel.org/pub/scm/linux/kernel/git/devicetree/devicetree-rebasing.git
revision: v6.1-dts
sourcedir: null
builddir: null
toolchain: aarch64-none-elf-
params: {}
prebuild:
- DTS=fvp-base-revc.dts
- INITRD_START=
- INITRD_END=
build:
- DT_BASENAME=$$(basename $${DTS} .dts)
- DTB_INTER=src/arm64/arm/$${DT_BASENAME}.dtb
- DTB_FINAL=${param:builddir}/dt_bootargs.dtb
- make CPP=$${CROSS_COMPILE}cpp -j${param:jobs} $${DTB_INTER}
- CHOSEN=
- if [ ! -z "${param:join_equal}" ]; then
- CHOSEN="$${CHOSEN}bootargs = \"${param:join_equal}\";\n"
- fi
- if [ ! -z "$${INITRD_START}" ] && [ ! -z "$${INITRD_END}" ]; then
- INITRD_START_HI=$$((($${INITRD_START} >> 32) & 0xffffffff))
- INITRD_START_LO=$$(($${INITRD_START} & 0xffffffff))
- INITRD_END_HI=$$((($${INITRD_END} >> 32) & 0xffffffff))
- INITRD_END_LO=$$(($${INITRD_END} & 0xffffffff))
- CHOSEN="$${CHOSEN}linux,initrd-start = <$${INITRD_START_HI} $${INITRD_START_LO}>;\n"
- CHOSEN="$${CHOSEN}linux,initrd-end = <$${INITRD_END_HI} $${INITRD_END_LO}>;\n"
- fi
- if [ -z "$${CHOSEN}" ]; then
- cp $${DTB_INTER} $${DTB_FINAL}
- else
- ( dtc -q -O dts -I dtb $${DTB_INTER} ; echo -e "/ { chosen { $${CHOSEN} }; };"
) | dtc -q -O dtb -o $${DTB_FINAL}
- fi
- if [ "$${DTS}" = "fvp-base-revc.dts" ]; then
- "OVERLAY=\"/ {\n reserved-memory {\n fw: fw@7C000000 {\n reg = <0x00000000\
\ 0xFC000000 0 0x04000000>;\n no-map;\n };\n };\n timer {\n clock-frequency\
\ = <100000000>;\n };\n psci {\n compatible = \\\"arm,psci-1.0\\\", \\\"\
arm,psci-0.2\\\";\n max-pwr-lvl = <2>;\n };\n cpus {\n cpu-map {\n \
\ cluster0 {\n core0 { cpu = <&{/cpus/cpu@0}>; };\n core1\
\ { cpu = <&{/cpus/cpu@100}>; };\n core2 { cpu = <&{/cpus/cpu@200}>;\
\ };\n core3 { cpu = <&{/cpus/cpu@300}>; };\n };\n cluster1\
\ {\n core0 { cpu = <&{/cpus/cpu@10000}>; };\n core1 { cpu = <&{/cpus/cpu@10100}>;\
\ };\n core2 { cpu = <&{/cpus/cpu@10200}>; };\n core3 { cpu =\
\ <&{/cpus/cpu@10300}>; };\n };\n };\n };\n bus@8000000 {\n motherboard-bus@8000000\
\ {\n iofpga-bus@300000000 {\n virtio@200000 {\n status\
\ = \\\"okay\\\";\n };\n };\n };\n };\n};\""
- ( dtc -q -O dts -I dtb $${DTB_FINAL} ; echo -e "$${OVERLAY}" ) | dtc -q -O dtb
-o $${DTB_FINAL}
- fi
postbuild: []
artifacts:
DTB: ${param:builddir}/dt_bootargs.dtb
edk2:
repo:
edk2:
remote: https://github.com/tianocore/edk2.git
revision: edk2-stable202211
edk2-platforms:
remote: https://github.com/tianocore/edk2-platforms.git
revision: 20e07099d8f11889d101dd710ca85001be20e179
acpica:
remote: https://github.com/acpica/acpica.git
revision: R10_20_22
sourcedir: null
builddir: null
toolchain: aarch64-none-elf-
params:
-a: AARCH64
-t: GCC5
-p: Platform/ARM/VExpressPkg/ArmVExpress-FVP-AArch64.dsc
-b: RELEASE
--pcd: PcdShellDefaultDelay=0
' --pcd': PcdUefiShellDefaultBootEnable=1
prebuild:
- export WORKSPACE=${param:sourcedir}
- export GCC5_AARCH64_PREFIX=$$CROSS_COMPILE
- export PACKAGES_PATH=$$WORKSPACE/edk2:$$WORKSPACE/edk2-platforms
- export IASL_PREFIX=$$WORKSPACE/acpica/generate/unix/bin/
- export PYTHON_COMMAND=/usr/bin/python3
build:
- make -j${param:jobs} -C acpica
- source edk2/edksetup.sh
- make -j${param:jobs} -C edk2/BaseTools
- build -n ${param:jobs} -D EDK2_OUT_DIR=${param:builddir} ${param:join_space}
postbuild: []
artifacts:
EDK2: ${param:builddir}/RELEASE_GCC5/FV/FVP_AARCH64_EFI.fd
tfa:
repo:
.:
remote: https://git.trustedfirmware.org/TF-A/trusted-firmware-a.git
revision: v2.8.0
sourcedir: null
builddir: null
toolchain: aarch64-none-elf-
params:
PLAT: fvp
DEBUG: 0
LOG_LEVEL: 40
ARM_DISABLE_TRUSTED_WDOG: 1
FVP_HW_CONFIG_DTS: fdts/fvp-base-gicv3-psci-1t.dts
BL33: ${artifact:EDK2}
ARM_ARCH_MINOR: 5
ENABLE_SVE_FOR_NS: 1
ENABLE_SVE_FOR_SWD: 1
CTX_INCLUDE_PAUTH_REGS: 1
BRANCH_PROTECTION: 1
CTX_INCLUDE_MTE_REGS: 1
ENABLE_FEAT_HCX: 1
CTX_INCLUDE_AARCH32_REGS: 0
ENABLE_SME_FOR_NS: 1
ENABLE_SME_FOR_SWD: 1
prebuild: []
build:
- make BUILD_BASE=${param:builddir} ${param:join_equal} all fip
postbuild: []
artifacts:
BL1: ${param:builddir}/fvp/release/bl1.bin
BL2: ${param:builddir}/fvp/release/bl2.bin
BL31: ${param:builddir}/fvp/release/bl31.bin
FIP: ${param:builddir}/fvp/release/fip.bin
artifacts: {}
run:
name: FVP_Base_RevC-2xAEMvA
rtvars:
LOCAL_NET_PORT:
type: string
value: 8022
BL1:
type: path
value: ${artifact:BL1}
FIP:
type: path
value: ${artifact:FIP}
DTB:
type: path
value: ${artifact:DTB}
CMDLINE:
type: string
value: console=ttyAMA0 earlycon=pl011,0x1c090000 root=/dev/vda ip=dhcp
KERNEL:
type: path
value: null
ROOTFS:
type: path
value: ''
EDK2FLASH:
type: path
value: ''
params:
-C bp.dram_size: 4
-C cluster0.NUM_CORES: 4
-C cluster1.NUM_CORES: 4
-C cluster0.PA_SIZE: 48
-C cluster1.PA_SIZE: 48
--stat: null
-C bp.vis.disable_visualisation: 1
-C bp.dram_metadata.is_enabled: 1
-C bp.refcounter.non_arch_start_at_default: 1
-C bp.refcounter.use_real_time: 0
-C bp.secure_memory: 1
-C bp.ve_sysregs.exit_on_shutdown: 1
-C pctl.startup: 0.0.0.0
-C cluster0.clear_reg_top_eret: 2
-C cluster1.clear_reg_top_eret: 2
-C bp.smsc_91c111.enabled: 1
-C bp.hostbridge.userNetworking: 1
-C bp.hostbridge.userNetPorts: ${rtvar:LOCAL_NET_PORT}=22
-C cache_state_modelled: 0
-C cluster0.stage12_tlb_size: 1024
-C cluster1.stage12_tlb_size: 1024
-C cluster0.check_memory_attributes: 0
-C cluster1.check_memory_attributes: 0
-C cluster0.gicv3.cpuintf-mmap-access-level: 2
-C cluster1.gicv3.cpuintf-mmap-access-level: 2
-C cluster0.gicv3.without-DS-support: 1
-C cluster1.gicv3.without-DS-support: 1
-C cluster0.gicv4.mask-virtual-interrupt: 1
-C cluster1.gicv4.mask-virtual-interrupt: 1
-C pci.pci_smmuv3.mmu.SMMU_AIDR: 2
-C pci.pci_smmuv3.mmu.SMMU_IDR0: 4592187
-C pci.pci_smmuv3.mmu.SMMU_IDR1: 6291458
-C pci.pci_smmuv3.mmu.SMMU_IDR3: 5908
-C pci.pci_smmuv3.mmu.SMMU_IDR5: 4294902901
-C pci.pci_smmuv3.mmu.SMMU_S_IDR1: 2684354562
-C pci.pci_smmuv3.mmu.SMMU_S_IDR2: 0
-C pci.pci_smmuv3.mmu.SMMU_S_IDR3: 0
-C bp.virtio_rng.enabled: 1
-C bp.secureflashloader.fname: ${rtvar:BL1}
-C bp.flashloader0.fname: ${rtvar:FIP}
-C bp.virtioblockdevice.image_path: ${rtvar:ROOTFS}
-C cluster0.cpu0.semihosting-cwd: $${SEMIHOSTDIR}
-C bp.flashloader1.fname: ${rtvar:EDK2FLASH}
-C cluster0.has_16k_granule: 1
-C cluster1.has_16k_granule: 1
-C cluster0.has_arm_v8-1: 1
-C cluster1.has_arm_v8-1: 1
-C cluster0.has_large_system_ext: 1
-C cluster1.has_large_system_ext: 1
-C cluster0.has_arm_v8-2: 1
-C cluster1.has_arm_v8-2: 1
-C cluster0.has_large_va: 1
-C cluster1.has_large_va: 1
--plugin: $$(which ScalableVectorExtension.so)
-C cluster0.has_arm_v8-3: 1
-C cluster1.has_arm_v8-3: 1
-C cluster0.has_arm_v8-4: 1
-C cluster1.has_arm_v8-4: 1
-C cluster0.has_amu: 1
-C cluster1.has_amu: 1
-C cluster0.has_arm_v8-5: 1
-C cluster1.has_arm_v8-5: 1
-C cluster0.has_branch_target_exception: 1
-C cluster1.has_branch_target_exception: 1
-C cluster0.has_rndr: 1
-C cluster1.has_rndr: 1
-C cluster0.memory_tagging_support_level: 3
-C cluster1.memory_tagging_support_level: 3
-C cluster0.has_arm_v8-6: 1
-C cluster1.has_arm_v8-6: 1
-C cluster0.ecv_support_level: 2
-C cluster1.ecv_support_level: 2
-C cluster0.enhanced_pac2_level: 3
-C cluster1.enhanced_pac2_level: 3
-C cluster0.has_arm_v8-7: 1
-C cluster1.has_arm_v8-7: 1
-C cluster0.has_arm_v8-8: 1
-C cluster1.has_arm_v8-8: 1
-C cluster0.has_const_pac: 1
-C cluster1.has_const_pac: 1
-C cluster0.has_hpmn0: 1
-C cluster1.has_hpmn0: 1
-C cluster0.pmb_idr_external_abort: 1
-C cluster1.pmb_idr_external_abort: 1
-C cluster0.has_arm_v9-0: 1
-C cluster1.has_arm_v9-0: 1
-C cluster0.max_32bit_el: 0
-C cluster1.max_32bit_el: 0
-C SVE.ScalableVectorExtension.has_sve2: 1
-C cluster0.has_arm_v9-1: 1
-C cluster1.has_arm_v9-1: 1
-C cluster0.has_arm_v9-2: 1
-C cluster1.has_arm_v9-2: 1
-C cluster0.has_brbe: 1
-C cluster1.has_brbe: 1
-C SVE.ScalableVectorExtension.has_sme: 1
-C cluster0.has_arm_v9-3: 1
-C cluster1.has_arm_v9-3: 1
-C cluster0.has_brbe_v1p1: 1
-C cluster1.has_brbe_v1p1: 1
prerun:
- SEMIHOSTDIR=`mktemp -d`
- function finish { rm -rf $$SEMIHOSTDIR; }
- trap finish EXIT
- cp ${rtvar:KERNEL} $${SEMIHOSTDIR}/Image
- cp ${rtvar:DTB} $${SEMIHOSTDIR}/fdt.dtb
- cat <<EOF > $${SEMIHOSTDIR}/startup.nsh
- Image dtb=fdt.dtb ${rtvar:CMDLINE}
- EOF
run: []
terminals:
bp.terminal_0:
friendly: ''
port_regex: 'terminal_0: Listening for serial connection on port (\d+)'
type: stdinout
no_color: true
no_escapes: 'EFI stub: Booting Linux Kernel...'
bp.terminal_1:
friendly: edk2
port_regex: 'terminal_1: Listening for serial connection on port (\d+)'
type: stdout
bp.terminal_2:
friendly: term2
port_regex: 'terminal_2: Listening for serial connection on port (\d+)'
type: stdout
bp.terminal_3:
friendly: term3
port_regex: 'terminal_3: Listening for serial connection on port (\d+)'
type: stdout